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Abstract. We present a general model for modulated lattices particularly suitable 
for the investigation of the moments of the density of states and establish an interpre 
tation of the dependence on the modulation parameter which avoids the occurrence 
of unphysical incommensurability effects. The final result is an exact interpretation 
of the influence of an inevitably finite resolution on the system characteriitics. We 
conclude by presenting some specialized results for Harper's equation in the context 
of this model. 

1. Motivation 

Typical of the problems in question is the tridiagonal Hamiltonian, which describes 
a chain of harmonic oscillators. This system is represented by a recurrence law that 
connects the elongations f, of three successive oscillators in the chain. 

A general form of this recurrence law is 

(w - az)fi = 6z=1.f::=1 + b,f ,̂, (1) 

where w is the eigenfrequency, the b, are nearest-neighbour couplings (spring COII- 

stants), while the a,, represent a self-coupling or the influence of a background field. 
The coefficents 6,,a, are real numbers determined as functions of the site-label n 

by 

a, = a(eiZffnm) (2) 

" 1 (3) = q e i 2 = n *  

where 0 is a fixed real number. This yields a Hermitian Hamiltonian. 
One specialization of this Hamiltonian yields Harper's equation [l] with 

b = e& " 
il +,2rrt* + e-.ikv-iz"nm a , = e  

= 2 cos(k, + 2i711a). 

n.,nc ..*vn,m ,n.1-nn I 1  cen9 c n  h *no. T " D  n..L,:"L:-- r .A " l l"u-- . r ," ,~ ' ,"~w~".T'uow.u" w L z = L  I". L "UL'>",L,& Y L "  

(4) 

(5) 

6% 
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Harper's equation emerges from a tight-binding model which describes a two-dimen- 
sional electron gas in a periodic potential subject to a perpendicular magnetic field. 
The quantity Q is determined by the ratio of the magnetic length and the period length 
of the periodic potential [2] and the k,, k,  are the components of the two-dimensional 
lattice wavevector. We further assume the Landau gauge A = B(O,z,O). This model 
recently gained new attention, as it coincides with a mean-field approach to the so- 
called anyon problem on a square lattice [3]. A discussion of special results for this 
problem can be found in [4]. 

Other specializations of this recurrence law are realized in simple models for long- 
itudinally modulated spin magnets [5 ,  61 with 
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a, = 0 (6) 

where @ is again determined by the ratio of the two relevant length scales, namely 
the lattice spacing along the direction of the spin modulation and the modulation 
wavelength. A is a phase shift, representing the influence of a probe on the system, 
e.g. the momentum transfer of a neutron beam to the system. 

In general, the existence of two characteristic length scales in a system defines a 
modu!a.tcd !a~t,tice. One !engt!i defines the !attice spacing and thr other a mod~Jz.tion 
wavelength. 

2. Introduction 

In order to explain the problem we want to address, let us  have a closer look a t  
Harper's equation. 

Hofstadter has carried out extensive studies of this model on a square lattice, 
investigating the change in the spectrum of the energy states caused by changes in the 
parameter @ [2]. The @-dependent spectrum which he obtained shows an appealing 
resemblance to a butterfly and is generally known as the Hofstadter butterfly. An 
explanation of his findings has been given much attention, but it is still incomplete. 

The most intriguing aspect of this model lies in the way Q influences the appearance 
of the spectrum. The spectrum is bounded and consists of an integer number N of 
discrete bands. 

To understand the way @ enters the problem consider the parameter e'''' intro- 
duced in (2) and (3). The values of (d2"*)" lie on the unit circle, and are dense on its 
circumference except when @ is rational, @ = M / N  say. In that case the unit circle 
is split into N arcs, and we pass M times round the unit circle while we mark the N 
distinct endpoints of translations by 2aQ. 

In the formalism presented later N will be found to determine the genuine dimen- 
sionality of the problem, represented by a polynomial 0 of degree N .  

As found by Hofstadt.er and others, N determines the number of bands in the 
energy spectrum and this result is confirmed by symmetry considerations. (The trans- 
iatory unit cell of the square lattice is extended to a unit cell of the modulated iattice 
by 'multiplication' by N . )  

This result nevertheless has odd consequences. Taking @ = 4 results i n  three arcs. 
If we now change @ to @' = 4 f 113' the first three translations closely resemble 
the previous cme. Taking the entity of endpoints however does not suggest any close 
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relationship. All cases with 0 with denominator 3-' appear the same. Furthermore 
as r -+ 00 as 0' approaches 0, we even seem to lose similarity. Allowing 10 - 0'1 to 
take on irrational values even worsens the result. 

So let us choose another approach. When we fix some 'resolution', i.e. some interval 
around the endpoints of a translation, we find that there is a perfect agreement between 
a certain number of translations N in both cases, which corresponds to  the resolution 
applied. Nevertheless, the errors per translation accumulate and exceed the fixed 
resolution interval sufficiently far from the set origin. This observation is independent 
of the rational or irrational nature of the deviation between and 0'. Furthermore, 
we find that a process taking 0' to 0 results in N - 00 for all finite resolutions. 
Hence this 'constructive' approach yields some suggestive way to picture the kind 
of continuous behaviour to be expected from modulated systems and highlights the 
importance of a finite resolution in the discussion. As this can be negligibly small, its 
presence supports the physical nature of the problem rather than presenting a problem 
by itself. 

We find that, whenever we are only interested in an essentially finite system, we 
should be able to  find suitable rational approximations to  0, depending on a given 
required resolution for the result. If N is now the number of lattice sites the possible 
approximations are primarily provided in a 1 / N  grid, but can then be extended to 
non-integer values for the numerator. This accesses all possible 0 values of the finite 
sized system, while the dimensionality of the problem remains constant. 

This has two consequences: 
( 1 )  every N-finite system can be described as a rational system with 0 = M / N  

with M E N or M E R as only the denominator really has t o  be a n  integer as it 
determines an integer quantity (the degree of 8); and 

(2) as it is impractical to calculate a macroscopic system based on (l),  we find that, 
as soon as ihe resoiuiion is cesiricieci by frlrciuaiions or iiieasiiiemmt ioiiimodities 
to a finite value, we obtain corresponding cells of size N in the crystal, in  which 
an approximate calculation with a system of dimension N is good. If this cell size 
corresponds to  a characteristic dimension of the system, e.g. the correlation radius, 
this calculation is a faithful description of the system. 

3. Defini t ion of the m o d e l  

Let V denote the linear space of all doubly infinite real sequences f = ( f n ) n E ~ ,  and 
let 2 be the operator given by 

with a,, b, as previously defined, the 6, being non-zero. Our concern is with the 
stable solutions of the eigenvalue problem 

Zf = w f .  

9.1.  The rattorial case 

For fixed w consider the corresponding eigeiispace U = (f : Zf = w f ) .  As b,, # 0 it 
is clear that fo  and f l  determine all f,, for n 2 0; as 6,,-] # 0 it is clear that all f,, 



702 

for n 5 1 are also determined. We obtain therefore a two-dimensional eigenspace U ,  
spanned by a , P  determined by the initial conditions 
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a :ma = 1 

a, = 0 

0 :pa = 0 

P, = 1 

and the related recurrence obtained from (1) [4, 61: 

fn = (U - a,-i)fn-i - b:-ifn-z. 

When @ is rational, the definition of a,, b, leads to 

b,+, = b, V n  

antN =a, Vn 

for some integer number N .  Suppose this is indeed the case, 
If we let E denote the usual shift operator on V 

E f  = (fn+l) 

then the hypothesis of rationality yields 

[ E N , Z ]  = 0 

(9) 

so that E N ( U )  C U .  As E N  and Z are simultaneously diagonalizable, let { denote 
the eigenvalues of E N :  

E N f  = C f  

Now we can specify the condition of a stable solution by requiring /{I = 1 .  This 
eigenvalue equation resembles Floquet’s theorem and if we set { = eiNq we obtain 
Bloch’s theorem 

- eiN9 
f n t N  - fn 

with q as the wavevector (k= in Harper’s equation). 

consider the action induced by Z on the space spanned by 
This condition restricts the values of w .  Let f be an eigenvector of E N  in U ,  and 

j := f modulo ( E N  - {)f 

which is just a scalar multiplication by w .  We have, therefore, 

(Z ,  - w 1 ) j  = 0 
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where 

Hence w is a root of 

S((w) := det(w1- Z,). 

A Laplace expansion of this determinant (based on the 2 x 2 minor of the corner 
elements) yields [6] 

where S(w) is a polynomial in w free of C. For convenience we write 

N - 1  

1 2 =  nb, (15) 
"=O 

and note tha t  we can scale to 12 = 1. Note tha t  as i + i-' = 0 we have @ ( U )  = S,(w). 
For every choice of C on the unit circle the polynomial S,(w) represents the char- 

acteristic polynomial of a Hermitian matrix. There will therefore be N real roots of 
S,(W), representing the N branches of the dispersion relation which are expected for 
a crystal with N atoms per unit cell. 

3.2. The densi ty  of stales  

The  equation S((w) = 0 also allows calculation of the density of states D(w). We 
suppose { to be uniformly distributed on the unit circle. 

From (14) we have 

S(W) + n(C + ( -1 )  = 0 (16) 

so that 

CS'(w) dw + Q({ - < - I )  d{ = 0 (17) 

Now 
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Together these yield 

C J Lnntwin nnd B Stewart 

As C is uniformly distributed on the unit circle, C = ei* with t uniform in [O,h). In 
terms of this parameter t 

With t = N q  from Bloch’s theorem and after normalization the  density of states is 
given by [6, 71 

3.3. . . . i n  terms of a nnd p 
We now obtain an  expression for D(w) in terms of the sequences a,@ which form a 
basis for the eigenspace U of the operator Z.  To do this i t  will suffice to give S’(w) 
and (C - C-’) in terms of these. For convenience, set R = 1. 

The  second of these is straightforward. Consider the action of S := E N  on the 
basis vectors a ,p  of U .  Let cl ,  C2 be the eigenvalues of S.  As the solutions are 
supposed to be stable, 

Hence 

From the characteristic equation we easily calculate 
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The value of S'(w) is slightly more complicated. The derivative of S(w) can he 
obtained as a sum of determinants obtained from S(w) by replacing one row by the 
corresponding row of derivatives. Each of these determinants is a pure tridiagonal 
determinant, a typical one being 

W - a ,  -b ,  0 . 0 
-bo w - a ,  - b ,  

. .  0 -61 

. . .  
0 . .  

. w - a N - 2  - b N - z  
0 . . 0 -bN-z w - a N - 1  

(27) 

This determinant is readily seen to he PN.  The value of @'(U) is then obtained as 

where summation is over all cyclic permutations of {O,.  . . , N - 11, and p" denotes 
the sequence P corresponding to this permutation of the parameters IQ,,, . . . , 
and { b o , .  . . , b N w I ] .  We therefore can express D ( w )  as 

The denominator, it is interesting to note, is symmetric with respect to U .  This is 
because the action of S = E N  can also be expressed by 

so that permutation by U merely yields a conjugate matrix. According to (18) and 
(25) the denominator is expressed by invariants to conjugation. 

3.4. The polyi iomial  S(w) 

Let us have a closer look at the denominator of D(w) .  We have 

0%) - 4 = S+,(w)S_,(w) (29) 

where each of @(U), S+,(w) ,0- , (w)  is the characteristic polynomial of a Hermitian 
matrix of degree N .  Each is therefore a real polynomial of degree N with only real 
roots. By (14) 6 '+1(~)  and S- , (w)  are just translates of S ( w )  by a vertical offset of 2 
and -2. 

The extrema1 value of O ( W )  between a pair of consecutive zeros therefore has a 
value of at least 2 (or at, most -2). The whole range can therefore be split up [ 8 ]  

- 0 2  < w; < U 1  5 w;  < w 2  5 ' " 5  w;v < W N  

so that S2(w)  - 4 5 0 011 the intervals [w: , wi] and nowhere else. 

form cos- (S(w) /ZSl ) .  
On each of these intervals [U:, wi] the density of states can be integrated in the 
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4. The degree of O(w)  

The model as set in section 3 seems to be heavily dependent on the integer number 
N .  Slight changes in @: for instance from f to [9] lead to enormous changes in 
the value of N and in the form of the polynomial S(w). However we will establish in 
this section that,  although N and O(w) may change violently, the physically significant 
quantities-the density of states, and its moments-vary in a reasonable way. 

Our discussion of the variation caused by changes in @ falls into three parts. First 
we show that our choice of a periodicity is effectively irrelevant with respect to the 
determination of the dimension of ZI  leaving it free to be determined by the choice of 
a resolution. Next we note the moments of the density of states must depend smoothly 
on @. Lastly we see how the various rational approximations can be used to describe 
the density of states in a general case. 

4.1. Redundancy 

Suppose that we mistakenly view a n  N-periodic system as a kN-periodic system. We 
shall then carry out the analysis of section 3, and find that the density of states is 
proportional to a sum of functions of the form 

C J Lanlwin arid B Stewart  

P k N  
J ( " k N  + P k N + I  )2-4  

Exactly as in (26) the denominator is given by 

2 
("kN + P k N t 1 )  - = (<I - CZ)' 

where Cl,t2 are the eigenvalues of E". In terms of the eigenvalues of E N ,  (that is of 
C1, Cz) this yields 

(31) 2 k k 2  
( a k N  + P k N + l )  - = (C1 - ( 2 )  ' 

To find PkN we first diagonalize E N  on the space U :  

where 

and 
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The (1,l)-entry of the right-ha,nd side is easily calculated and yields 

The  increased number of summands in the density of states cancels due to the nor- 
malization factor 1/2akN. As far as the density of states is concerned it makes no 
difference whether the periodicity is underestimated or not. In practice the cases 
Q = $, Q = 2 can be viewed as the cases Q = 34, Q = 

4.2. The moments of the density of states 

Following Lovesey [6] we shall now determine the  moments of the density of states 
algebraically using the  closure and orthogonality property of the eigenvectors f y ,  

where Greek letters label the frequency eigenvalue. 

and  discussed together. 102 

Labelling the  cyclic permutations of the indices by their last elements m we can express 
the summands of D ( u )  as [6]: 

Note tha t  since the density of states is itself an even function of w all odd moments 
vanish. Now we write down the first three eveii moments: 
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m 

M2 = / -U-,) 
-m 

(43) 

x a k + 2 b $  
m 

(45) 

(46) 

M4 = x 2 b $ _ , b $ - ,  + 2 ( b m - l a m - l  + a m b m - l ) z  + (a$ + b$ + 
m 

It is due to the structure of the recurrence problem tha t  the moments are composed of 
neighbour products of the coefficients. The  depth of these products, i.e. the maximum 
difference of indices within one term is easily calculated to be (1/2 - 1). The  first 
I f  moments of a function are known to determine the Ii'th Pad6 approximant. This  
approximation scheme is via the continued fractions approach [G, 101 connected t o  the 
calculation of the determinant 9.  Therefore we only need N moments for a desired 
resolution of IIN i n  e. 

The  structure of the moments of the  density of states makes them smooth functions 
of Q and the density of states is given via these moments as a Pad& approximant. 

4.3. Smal l  rational uarialions 

We now consider the effect of small rational variations in which do not change the 
underlying periodicity. In each case the density of states is found by eliminating C 
from the equations 

S(w) + R(C + c-11 = 0 

CS'(w) dw + O(( - ( - I )  d C  = 0.  

(47) 

(48) 

Here the coefficients of 6'(w)/R, but nothing else, depend on the parameter e. 
Although values of Q not of the form m/N may not lead to physically significant 

results, we can still, in principle, carry out the elimination and find what we may call 
D N ( w ) ,  It  is clear tha t  in general the moments of D N ( w )  will depend smoothly on 
the coefficients of 9 and on R, tha t  is the a, and the b,. The  density of states is itself 
problematic, as it shows square root singularities in w .  

In general, in problems where the a, and b, are sufficiently smoothly dependent 
on e, the moments will be smooth functions of this parameter. 

4.4. Real valves 

The  force of tlie previous subsection is that the moments of the density of states 
are (in general) smooth functions on the rationals. Because of the reality condition 
40' 2 0 2 ( w )  the effective range of interest is a compact sett 9 ( w ) f 2 0  are in fact 9*1(w) 
whose roots are real, and by Gershgorin's theorem are bounded by some function Of 

the coefficients a, and b,. 
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It will therefore be possible (in general) to define the density of states for any 
real @ by means of N-dimensional approximations. This accords with the physical 
requirements: the limits of the precision mean that a model differentiating rational 
and irrational values would be unacceptable. 

5. Discussion 

According t o  the plan sketched in the introduction, we have given a general solution for 
a modulated lattice problem for a rational modulation. We then proceeded to separate 
the modulation parameter from the dimensionality of the mathematical description. 
First we obtained that an underestimation of the periodicity by an integer number 
of periods gives no change in the physics. This enables us to investigate a range of 
differen! systems by founding the description OE s c o m m o ~  m!!!tip!Ier of ?he present 
denominators. The differences in the modulation now enter merely as variations of 
the coefficients of a polynomial of constant degree. 

We further established a way to calculate approximations to a model with constant 
degree of S(w), where the approxima,tion becomes particularly good for high degrees. 
This finally decouples the dimensionality of the problem from its modulations. As 
indicated in the introduction the dimensionality can now be determined by other 
requirements, e.g. the correlation radius. 

In this way physical systems become essentially finite and a description with finite 
dimensionality suffices. Modulations other than rational are accessible by allowing the 
numerator of @ to take on rea! values. 

We find that in this approach incommensurability anornalities are absent, as it h a s  
t o  be in the presence of a finite resolution. This leads to a satisfying physical picture. 

Appendix 1. Further properties of O(w) 

In this appendix we give more detailed results mainly for the case of Harper's equa- 
tien, These i!!ustrs?e =.ore c!ear!y the !ne.?hematica! sfruc.ture of 0 especia!!y in this 
particularly symmetric case of the general problem and indeed are of value in making 
explicit calculations. 

A l . l .  Harper's equation 

Harper's equation, to which we restrict our attention here, arises in the case of the 
system 

Let 



710 

then our finite matrix is given by 
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a l  F 0 . . . F-' 
f-' a2 F 
0 (-1 . . 

I . .  

0 

UN 

. .  
' aN;l t 

[ . , . u t - .  

Z =  

Now let 

and 

0 1 0 ' . 0  
0 0 1  
0 0 "  

0 
0 1  

1 .  . . 0 0  

x =  [ .  . .  

(53) 

(54) 

For our present purpose we can most conveniently treat Z by the decomposition: 

A l . %  Cylindrical symmetry 

Suppose now that = M / N  in lowest terms. Let Z be the matrix whose (n, 1)th entry 
is a"'. As ~ i l  is of multiplicative order N we have that E-which is in fact an ordinary 
character table for the cyclic group of order N-is non-singular, and has inverse E'. 
Moreover 2 satisfies 

x'= - z y  

y= - =x-1 

- - -  
- - -  

so that Z conjugates X to Y and Y to  S-' 
Hence 

(57) 

(58) 

The characteristic polynomial is unaltered by this conjugation. Hence ( and 'I-' enter 
into the characteristic polynomial in exactly the same way. 

We know, however, in general tlie way ( enters. An easy conjugation transforms 
all off-diagonal entries of Z (except tlie corner elements) to  1, the corner elements to  
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From equation (14) we have that < enters the characteristic equation eN and 
only in the form ( E N  + appearing in the  constant term. Hence we have tha t  

S(,n(w) := det(w1- Z )  = S ( W )  + (<N +<-N + qN + v - ~ )  (60) 

01 

Oc,,n(wj = e j w j + 2 c o s N k z + 2 ~ ~ ~ N k ,  ( S i )  

Here S(w) can be  taken as a suitable S c , s ( ~ ) .  
It should be  noted tha t  this result only holds when M / N  is in lowest terms. In 

general E becomes singular, X and Y are not conjugate, and in special cases the p 
may be detected in higher coefficients. Our general result on the irrelevancy of the 
exact period could not hold i i  this were not  so. 

A1.9. Generai representations of M / N  

We turn now to the relationship between the cases @ = M / N  and @ = k M / k N  of 
Harper's equation. We continue to suppose tha t  M ,  N are coprime. For convenience 

For @ = k M / k N  we let w now denote e iZn(M/kN);  we then have (in kN dimensions) 
X:d) := gc Pd) p;e.vriGn&, calcu!at;d fro- the @ = ),[/'rq, ,n 

the  expression 

z = <x + t-Ix-1+ IlYk + q - 1 y - k .  ( 6 2 )  

Conjugation by 2 now yieids 

zzz-1 = <Y + <- lY - 1  + vx-' + q - l x k .  (63) 

T h e  matrix X represents the cyclic permutation of the row vectors; hence X k  permutes 
these in k blocks of size N .  I n  fact the whole of E - l Z E  decomposes in to  a direct sum of 
Harper matrices, The  pa,raineters ( E ,  llj being replaced by ( q - ' , c w ! ) ,  i = 6,. . . , k - i. 
In  an obvious notation 

k - 1  

X * ( W )  = n ( S ( w ,  + q N  + 71-N +ENT' + E-Nr- ' )  (64) 
r=O 

where r = e iZr lk .  
The polynomial for the  k-fold syst,eni is merely a product of k vertical translates 

of the polynomial for t h e  single system. This allows ns to form a fairly clear picture 
of xr(w). 

A 1 I 1, i h a  n a n a m l  " " 4 '  ',. -,*. YL,e"'U. 

In the case when the paraniet,er @ is given by kA4/kN, we found tha t  the denominator 
of the density of states reads 

((2 -c,,cc: -e). (65) 
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Therefore 
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(@,(U) denotes the polynomial S(w) in the redundant case.) 

{ -{’ = Jm 
= 2 s i n N q  

say, where q is the wavevector as defined by Bloch’s theorem. Now (67) reads 

v k l w ,  n Z ,  .\ - 4 = 1FSiii2 ::qsin2 k N y  

J F 4 =  4sinz NqsinkNqlsi i iNq 

= 4sinz NqTk+,(2cos Nq). 

Here Tk denotes the kth Chebyshev polynomial. The argument 2cos Nq is twice the 
:ea! part of {, which is nothing other thar. S(u). 

The Chehyshev polynomials are defined by the recurrence relation: 

or in case of x = 2 cos a 

s i n k a  = 2 c o s u s i n ( k -  l ) a - s i n ( k - 2 ) a  

A1.5. Symmeiry an w 

As 

z = (X +[-‘A-’ + qY + Il-ly-’ (76) 

we have 

- 2 = (-OX +(-()-1X-’ + (-71)Y + (-q)-lY-! (77) 

Now the characteristic polynomial is both / J c , q ( w ) ( - l ) N  on general grounds, and 
S-(,-,,(w) in view of (77). So we have 

@(U) + ( - O N  + ( - ( ) - N + ( - q ) N  + ( - q ) - N  = (-1)N[S(-w)+FN + E - N  +qN +v-N1. 
(78) 

Hence 

S(w) = ( - l ) N S ( - w ) .  (79) 
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That  is the polynomial S(w) is even or odd with N .  

enter only in squares in the a and 
In another case with a, = 0 and b ,  arbitrary, we find the same property as the b, 

[lo]. 
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